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Abstract
Synaptic dysfunction and loss is the strongest pathological correlate of cognitive decline in

Alzheimer’s disease (AD) with increasing evidence implicating neuropathological tau protein in this

process. Despite the knowledge that tau spreads through defined synaptic circuits, it is currently

unknown whether synapse loss occurs before the accumulation of tau or as a consequence. To

address this, we have used array tomography to examine an rTgTauEC mouse model expressing a

P301L human tau transgene and a transgene labeling cytoplasm red (tdTomato) and presynaptic

terminals green (Synaptophysin-EGFP). All transgenes are restricted primarily to the entorhinal

cortex using the neuropsin promotor to drive tTA expression. It has previously been shown that

rTgTauEC mice exhibit neuronal loss in the entorhinal cortex and synapse density loss in the mid-

dle molecular layer (MML) of the dentate gyrus at 24 months of age. Here, we observed the

density of tau-expressing and total presynapses, and the spread of tau into the postsynapse in the

MML of 3–6, 9, and 18 month old red–green-rTgTauEC mice. We observe no loss of synapse den-

sity in the MML up to 18 months even in axons expressing tau. Despite the maintenance of

synapse density, we see spread of human tau from presynaptic terminals to postsynaptic compart-

ments in the MML at very early ages, indicating that the spread of tau through neural circuits is

not due to the degeneration of axon terminals and is an early feature of the disease process.
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1 | INTRODUCTION

The observation that neurons of the entorhinal cortex (EC) are affected

very early by neurofibrillary tangle pathology in Alzheimer’s disease (AD)

has been recognized for >30 years (Braak & Braak, 1991; Hyman, Van

Hoesen, Damasio, & Barnes, 1984). These layer II neurons link the cere-

bral cortex with the hippocampus via the perforant pathway (Hyman,

Kromer, & Van Hoesen, 1987), a critical projection for memory function.

Disruption of this neural circuit through selective loss of neurons, synap-

ses, and the accumulation of tau lesions, is thought to contribute to the

early memory impairments observed in AD (Hyman, Van Hoesen, &

Damasio, 1990). As the disease progresses, tau pathology propagates

from the EC in a well-characterized anatomical pattern extending to lim-

bic and association cortices (Braak & Braak, 1991). The mechanism of

this spreading has yet to be determined, however, mounting evidence

suggests that tau spreads trans-synaptically and that synaptic activity

increases the spread of tau through synapses (de Calignon et al., 2012;

Harris et al., 2012; Liu et al., 2012; Pooler, Phillips, Lau, Noble, & Hanger,

2013; Walsh & Selkoe, 2016; Wu et al., 2016). One potential route of

tau moving from presynapses to postsynapses is the degradation of
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presynaptic terminals due to the presence of toxic tau. This would

release pathological tau from the degenerating presynaptic terminal

which could then be taken up by the postsynapse; a possibility sup-

ported by many studies showing that cells in culture can take up extrac-

ellular tau (Frost, Jacks, & Diamond, 2009; Guo & Lee, 2011; Kfoury,

Holmes, Jiang, Holtzman, & Diamond, 2012; Lewis & Dickson, 2016).

In the present study we directly address the question of whether

degeneration of tau expressing presynaptic terminals is necessary for

the spread of tau to postsynaptic compartments in a defined neural cir-

cuit. To do this, we examine the red–green-rTgTauEC transgenic mouse

model, which reversibly express human mutant P301L tau under the

control of the neuropsin promoter restricting expression primarily to

the medial entorhinal cortex (de Calignon et al., 2012; Polydoro et al.,

2013; Pooler, Polydoro, et al., 2013). These neurons overexpressing

mutant tau also express Myc-tagged tdTomato and full-length synapto-

physin/mut4EGFP fusion protein (EC-tdTomato/Syp-GFP) (Li et al.,

2010; Miyamichi et al., 2011). tdTomato expression is cytoplasmic,

while GFP expression is directed to the presynapse. This mouse line

allows visualization of the synaptic terminals of human tau expressing

neurons. Here, we utilized array tomography to determine whether the

density of tau and GFP-expressing presynapses is altered prior to global

synapse loss. Employing this high resolution imaging technique, we fur-

ther characterized the spread of human tau protein within this model

and demonstrate that the propagation of tau through anatomically con-

nected brain regions is not due to the degeneration of presynaptic ter-

minals and is an early feature of the disease process.

2 | MATERIAL AND METHODS

2.1 | Animals

Three to six (n54), 9 (n54), and 18 (n54) month old rTgTauEC1EC-

tdTomato/Syp-GFP and 3–6 (n53), 9 (n53), and 18 (n56) month old

EC-tdTomato/Syp-GFP littermate control mice of both sexes were used

for array tomography experiments. rTgTauEC1EC-tdTomato/Syp-GFP

mice were generated as described previously (Pooler, Polydoro, et al.,

2013) by crossing FVB-Tg(tetO-TauP301L)4510 (SantaCruz et al.,

2005) mice with the Tg(tetO-tdTomato-Syp/mut4EGFP)1.1Luo/J line

obtained from Jackson Laboratory . Progeny expressing both Tg(tetO-

TauP301L)4510 and Tg(tetO-tdTomato-Syp/mut4EGFP) transgenes

were crossed with a line expressing the tetracycline sensitive transcrip-

tional activator controlled by the Klk8 neuropsin promotor (EC-tTA) to

generate mice expressing both rTgTauEC1EC-tdTomato/Syp-GFP. Lit-

termates expressing the EC-tTA and Tg(tetO-tdTomato-Syp/

mut4EGFP) to result in EC-tdTomato/Syp-GFP without tau expression

were used as controls. PCR screening was used to genotype animals

using primer pairs 50-ACCTGGACATGCTGTGATAA-30 and 50-TGCT

CCCATTCATCAGTTCC-30 for the EC-tTA transgene, 50-TGAACCAGG

ATGGCTGAGCC-30 and 50-TTGTCATCGCTTCCAGTCCCCG- 30 for Tg

(tetO-TauP301L)4510 tau transgene, and 50 CTT CAA GTC CGC CAT

GCC CGA 30 and 50 TCC AGC AGG ACC ATG TGA TCG C 30 for the

EC-tdTomato/Syp-GFP transgene.

All animal experiments were performed in accordance with institu-

tional and national ethics guidelines and approved by the Harvard

Medical School Institutional Animal Care and Use Committee and the

U.K. Home Office.

2.2 | Array tomography

Fresh brain tissue samples were collected from rTgTauEC1EC-tdTo-

mato/Syp-GFP and EC-tdTomato/Syp-GFP control transgenic mice as

outlined previously (Kay et al., 2013; Koffie et al., 2009). Briefly, small

tissue blocks containing the dentate gyrus and entorhinal cortex were

fixed in 4% paraformaldehyde and 2.5% sucrose in 20 mM phosphate

buffered saline pH7.4 (PBS) for 3 hr. Samples were then dehydrated

through ascending cold graded ethanol and embedded into LR White

resin (EMS) which was allowed to polymerize overnight at 538C. Resin

embedded tissue blocks were cut into array ribbons of 70 nm thick

sections using an ultracut microtome (Leica) equipped with a Jumbo

Histo Diamond Knife (Diatome, Hatfield, PA) and collected onto gelatin

coated coverslips.

For immunolabeling of synaptic density, array ribbons were immu-

nostained with primary antibodies against total presynapses (synapto-

physin) and presynapses from neurons overexpressing human tau

(GFP) and fluorescently labeled secondary antibodies (Table 1). For

immunolabeling of pathological tau spread, array ribbons were immu-

nostained with primary antibodies against postsynapses (PSD95) and

human tau (Tau13) and fluorescently labeled secondary antibodies

(Table 1). Sections were counterstained with .01 mg/ml 40-6-

diamidino-2-phenylindole (DAPI). In each experiment, a short extra rib-

bon was used as a no primary negative control. For each area of inter-

est (middle molecular layer of the dentate gyrus), images were

obtained on serial sections using a Zeiss axio Imager Z2 epifluorescent

microscope at 63X 1.4 NA Plan Apochromat objective with equipped

CoolSnap digital camera and AxioImager software with array tomogra-

phy macros (Carl Zeiss, Ltd, Cambridge, UK).

TABLE 1 Summary of antibody details used for array tomography

Primary
antibody Source Dilution

Working
concentration (mg/ml) Secondary antibody

Synaptophysin Abcam (ab8049) 1:50 .02 Donkey anti-mouse Alexa594, Invitrogen

GFP Abcam (ab13970) 1:100 .10 Goat anti-chicken Alexa488, Abcam

Tau13 Covance (MMS-520R) 1:50 .02 Donkey anti-mouse Alexa647, Invitrogen

PSD95 Fronteir Institute (Af628) 1:10 .02 Donkey anti-rabbit Alexa594, Invitrogen
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Images from each set of serial sections were converted into image

stacks and aligned using the Image J plug-in, MultiStackReg (courtesy

of Brad Busse and P. Thevenaz, Stanford University) (Thevenaz, Rutti-

mann, & Unser, 1998). Cropped regions of interest (10 lm2) within the

middle molecular layer of the dentate gyrus were generated. Image

stacks were then binarized using thresholding algorithms in ImageJ. For

total presynaptic and postsynaptic images stacks were binarized using

an ImageJ script that combines different thresholding algorithms to

select both high and low intensity synapses in an automated and

unbiased manner (macros are provided along with primary data con-

tributing to the paper on the University of Edinburgh DataShare repos-

itory https://doi.org/10.7488/ds/1706). To calculate the synaptic

FIGURE 1 Synaptic images were obtained from the MML of the dentate gyrus from each section along the entire array ribbon (A.I–II).
GFP expression is evident in the middle molecular layer of the dentate gyrus (B) of (I) 3–6 month (III) 9 month and (V) 18 month old
rTgTauEC1EC-tdTomato/Syp-GFP mice and (II) 3–6 month (IV) 9 month and (VI) 18 month old EC-tdTomato/Syp-GFP control mice. Scale
bars represent 1 mm in A(I), 200 lm in A(II), and 20 lm in B(I–VI)
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density of both total presynapses and GFP-positive presynapses,

thresholded images were processed and analysed in MATLAB to

remove background noise (objects present in only a single section were

removed). The % GFP-positive presynapses from each mouse was cal-

culated as the sum of the number of GFP-positive presynapses/sum

total presynapses. To examine the spread of tau pathology, thresholded

images were processed and analysed in MATLAB to remove back-

ground noise and to calculate the colocalization of Tau13 with postsy-

napses (a minimum of 50% overlap between Tau13 and PSD95 puncta

was required to classify colocalization).

2.3 | Statistical analyses

2.3.1 | Array tomography—synaptic density

Total presynaptic density detected by synaptophysin labeling and GFP-

positive presynaptic density were normally distributed across crops for

each mouse, therefore, the mean total presynapses and mean GFP-

positive presynapses were taken for individual mice. Group total pre-

synaptic density and GFP-positive presynaptic density were normally

distributed so a two-way ANOVA was performed (SPSS). All values are

reported as mean and SEM.

2.3.2 | Array tomography—spread of tau pathology

The % postsynapses colocalising with Tau13 from each mouse was cal-

culated as the sum of the number of colocalization/sum total postsy-

napses within the MML. Group data for the colocalization of

postsynapses with Tau13 was not normally distributed so the nonpara-

metric Kruskal–Wallis test was performed (GraphPad Prism 5). The %

synaptic pairs colocalising with Tau13 from each mouse was calculated

as the number of pairs colocalising with Tau13/sum total synaptic

pairs. Group data for the colocalization of synaptic pairs with Tau13

was not normally distributed so the nonparametric Kruskal–Wallis test

was performed (GraphPad Prism 5). All values are reports as median

and interquartile range.

3 | RESULTS

3.1 | GFP-positive synapse density is not altered prior

to global synapse loss

Evident global synapse loss has previously been observed at 24 months

of age in rTgTauEC mice (de Calignon et al., 2012). Synapse loss is pre-

ceded by behavioral abnormalities and presynaptic dysfunction at 16

months of age (Polydoro et al., 2014). Here, applying the high resolu-

tion imaging technique, array tomography, we examined whether syn-

apse loss of the terminals that express mutant tau would precede the

global synapse loss in the MML of the dentate gyrus in line with synap-

tic dysfunction. To characterize synaptic density a 1-day imaging proto-

col was performed. To determine whether synaptic density of mutant

tau terminals was altered with age we applied combinations of synap-

tophysin (total presynaptic recognising antibody) and GFP antibody

(specifically recognising terminals from neurons overexpressing mutant

FIGURE 2 Quantification of synaptic density with array tomography. (A) total presynapses detected by synaptophysin immunolabeling, (B)
GFP-positive presynapses, (C) % GFP-positive presynapses in the MML of the dentate gyrus. Data shown are means6 SEM, individual
points represent the mean value from each mouse
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tau and tdTom/EGFP (rTgTauEC1EC-tdTomato/Syp-GFP) or tdTom/

EGFP alone (EC-tdTomato/Syp-GFP control). We observed strong GFP

expression within the MML of 3–6, 9, and 18 month old mice of both

genotypes (Figure 1).

Quantification of synaptic density revealed no significant effect of

genotype or age on the density of global presynapses detected with

synaptophysin labeling (Figure 2A). Examination of presynaptic termi-

nals derived from neurons overexpressing mutant human tau revealed

a significant effect of genotype (p< .05) on the density of GFP-positive

terminals (Figure 2B) and the percentage of total presynapses that

were GFP-positive (Figure 2C), however, there was no significant effect

of age.

3.2 | Array tomography reveals spread of tau prior to

global synapse loss

Previous studies in rTgTauEC mice have shown granule cells of the

dentate gyrus accumulating human tau at 18 months of age (de Calig-

non et al., 2012) while neuronal loss in the entorhinal cortex and global

synapse loss are observed by 24 months of age. Here, we utilized a 1-

day imaging protocol to examine at what stage of disease progression

tau protein spreads to the postsynapses of the MML. We observed

human tau detected with Tau13 antibody within axons in the MML of

the dentate gyrus of 3–6, 9, and 18 month old rTgTauEC1EC-tdTo-

mato/Syp-GFP mice as expected (Figure 3A–C). Tau13 is not detected

in red–green- EC-tdTomato/Syp-GFP control mice in which mutant tau

is not overexpressed (Figure 3D).

Further examination of postsynaptic puncta (PSD95 labeling)

within the MML revealed the presence of human mutant tau at the

postsynaptic density (Figure 4) of rTgTauEC1EC-tdTomato/Syp-GFP

mice at all ages tested, starting at 3 months, which is 21 months prior

to the loss of synapses that occur in this line (Figure 4A,B). Quantifica-

tion within the middle molecular layer of the dentate gyrus revealed

10% of postsynapses at 3–6 months of age, 8% of postsynapse at 9

months of age and 9% of postsynapses at 18 months of age colocalis-

ing with Tau13 (Figure 4G). Further analysis of putative synaptic pairs

(composed of presynapses derived from layer II EC neurons (GFP1 ve),

and postsynapses of the MML within 0.5 lm proximity), revealed a

subset of synaptic partners in which both the presynaptic and postsy-

naptic compartments were tau positive at all ages studied (Figure 4H).

This suggests that tau protein can spread from intact presynapses to

neighboring postsynapses within this model without requiring presyn-

aptic terminal degeneration.

4 | DISCUSSION

The spread of tau inclusions through the brain occurs in a well-

characterized hierarchal pattern in AD and plays a role in the disease

pathogenesis. Despite accumulating evidence supporting trans-

FIGURE 3 Human tau detected by Tau13 (cyan) in the MML of the dentate gyrus, Synaptophysin (red) and GFP (green) in (A) 3–6 month
(B) 9 month (C) 18 month old rTgTauEC1EC-tdTomato/Syp-GFP mice. Human tau is not present in the MML of EC-tdTomato/Syp-GFP
control mice (D). Scale bar represents 20 lm
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FIGURE 4 Human tau pathology spreads from presynaptic terminals derived from neurons overexpressing tau to the postsynapses of the
MML of the dentate gyrus. Human tau pathology is present within the MML of 3–6 month (A) 9 month (C) and 18 month old
(E) rTgTauEC1EC-tdTomato/Syp-GFP mice. Individual postsynapses detected by PSD95 are Tau13 positive at 3–6 months (B) 9 months
(D) and 18 months (F). Arrows depict postsynapses, arrowheads depict neighboring presynapses derived from neurons overexpressing tau.
Array tomography quantification reveals a subset of postsynapses (G) and a subset of putative synaptic pairs (H) colocalize with Tau13
at 3–6, 9, and 18 months of age. Scale bars represent 20 lm in a, c, e, and 1 lm in B,D,F. Data shown are medians and interquartile
ranges; individual points represent the median value from each mouse
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synaptic propagation of tau through neuronal connectivity (de Calignon

et al., 2012; Harris et al., 2012; Liu et al., 2012), the mechanism under-

pinning this pathological progression is not fully understood and

remains a matter of debate. It has been proposed that degeneration of

presynaptic terminals may result in the leakage of tau and subsequent

spread to neighboring postsynapses (Wang & Mandelkow, 2016). Our

data suggest that in the rTgTauEC1EC-tdTomato/Syp-GFP mouse

model, the propagation of tau is not solely a consequence of axon ter-

minal degeneration since tau is detected at postsynapses in the MML

of the dentate gyrus prior to the loss of presynapses and in postsynap-

ses directly opposed to presynaptic terminals. Our results are consist-

ent with data from cultured primary rodent neurons and human iPSC

derived neurons showing that tau is released from healthy neurons in

the absence of cell death (Kanmert et al., 2015); and expand this

concept demonstrating that in vivo, tau can spread from presynaptic

to postsynaptic elements without substantial loss of presynaptic

terminals.

Several key questions remain to understand tau propagation

through the brain including, which types of tau spread and what are

the mechanisms of tau release from presynapses and uptake from

postsynapses? Many forms of tau have been observed to be secreted

in vitro including phosphorylated tau (Pooler, Phillips, et al., 2013;

Saman et al., 2012) and C-terminally truncated tau (Kanmert et al.,

2015). Recent data from AD cerebrospinal fluid and brain samples indi-

cates that high molecular weight tau species may be released from

human neurons and are competent to induce tau seeding in cultured

cells (Takeda et al., 2016). Several mechanisms of tau release have

been proposed (reviewed by (Wang & Mandelkow, 2016)) including

exocytosis of tau, vesicle mediated release such as in exosomes (Saman

et al., 2012), or synaptic vesicle release (Polanco, Scicluna, Hill, & Gotz,

2016). Once released from the presynaptic cell, multiple mechanisms

could also regulate uptake in recipient neurons including endocytosis

or fusing of exosomes with recipient cells. In addition to neuronal

release and uptake of tau, there is evidence for a role of glia in modu-

lating tau spreading. Microglial activation has been reported to precede

tau propagation (Maphis et al., 2015) and it has been proposed that

microglia act to phagocytise and release tau in microglial-derived exo-

somes (Asai et al., 2015).

The uptake of tau by neighboring postsynapses ultimately induces

neurofibrillary tangles within downstream neurons via as yet unknown

templating or seeding mechanisms. These intracellular inclusions corre-

late with the cognitive decline and neuronal loss observed in AD (Arria-

gada, Growdon, Hedley-Whyte, & Hyman, 1992; Giannakopoulos

et al., 2003). However, neuronal loss greatly exceeds the burden of

neurofibrillary tangles, and it has become increasingly recognized that

soluble forms of tau may mediate synaptic and neuronal toxicity

(Gomez-Isla et al., 1997; Kopeikina, Hyman, & Spires-Jones, 2012;

Lasagna-Reeves et al., 2011; Rocher et al., 2010).

Despite the many questions that remain surrounding the propaga-

tion of tau through the brain, it is clear that tau spreads through the

brain, likely via synaptic circuits. A promising therapeutic avenue is to

prevent the spread of tau using immunotherapies (Gerson & Kayed,

2016). Our results indicate that this spread begins very early in the dis-

ease process, and shows the utility of the array tomography technique

for detecting tau protein at the level of individual synapses. This will be

useful in preclinical studies of treatments to determine whether they

prevent the trans-synaptic spread of tau.
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